
Fuzz Testing on Android
Guanqing Yan, Tianshuo Su

ResultMechanism

Intro Discussion

Neither
61% Hanged Only

6%

Crashed Only
17%

Crashed and Hanged
17%

Fg.3 Evernote under
fuzz testing

Fuzz testing presented a number of
challenges on Android.
1. Many apps have social features that

allows a user to connect to other
users. Traditional fuzz testing may
send garbage and cause
disturbances to real users.

2. The apps are usually a lot more
stateful and less deterministic than
traditional command line utilities.
This reduces the reproducibility of
test results.

3. All the apps we tested are
proprietary, this limits the amount of
analysis we can do on the cause of
bugs.

Fuzz testing was originally presented
as a class project of CS736 in 1988.
The idea is to test the reliability of
applications by feeding them random
generated inputs. The methodology not
only has potentials to reveal bugs that
may not be discovered from normal
testing, but also is easy to be setup
and run.
 Ever since fuzz testing has first been
proposed, it has been conducted on
Unix shells, X-Window, MacOS and
Windows NT. In this study, we
experimented fuzz testing on Android,
one of the dominating mobile platforms
today.

Fg. 1 The path for normal and injected touch event

Fg. 2 Experiment Result

We selected 18 popular applications from the
Google Play Store, For each application, 20
runs of 500 random touch events were
conducted.
 In each test run, we injected a random
touch event into the application, and then
queried the top most activity.
 We used a rather simple criteria to detect if
the app has crashed, which is when the top
most activity becomes the home page.
 If the top most activity was not the
homepage nor the app we were testing, we
assumed that a redirection has occurred (e.g
tapping on a link may take you to Chrome). In
that case, we simply simulated a touch on
the ‘back’ button.
 If the injected touch event blocked for more
than a predefined threshold (4.5s in our
experiment), we categorized it as App Not
Responding (ANR, equivalent of hanging).

for i in range(NUM_RUNS):
 start_app()
 seed_random(i)
 last_touch_time = current_time
 for j in range(NUM_TOUCHES):
 last_touch_time = current_time()
 # may block
 device.generate_random_touch_event()

 if current_time() - last_touch_time > ANR_LIMIT:
 handle_anr()
 break
 if top_activity() == HOME_PAGE:
 handle_crash()
 break
 if top_activity() != app_being_tested:
 # redirection happened, get back to
 # the app we are testing
 device.press_back_button()
 stop_app()

